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A B S T R A C T

Transfer learning from natural image datasets, such as ImageNet, is common for applying deep learning
to medical imaging. However, the modalities of natural and medical images differ considerably, and the
reason for the latest medical research preferring ImageNet to medical data is questionable. In this study,
we investigated the properties of medical pre-training and its transfer effectiveness on various medical
tasks. Through an intuitive convolution-based analysis, we determined the modality characteristics of images.
Surprisingly, medical pre-training showed exceptional performance for a classification task but not for a
segmentation task since medical data are visually homogeneous and lack morphological information. Using
data with diverse modalities helped overcome such drawbacks, resulting in medical pre-training achieving
performance comparable to pre-training with ImageNet with considerably fewer samples than ImageNet for
both aforementioned tasks. Finally, a study of learned representations and realistic scenarios indicated that
while ImageNet is the best choice for medical imaging, medical pre-training has significant potential.
1. Introduction

With the continued development of deep learning and convolu-
tional neural networks (CNNs), transfer learning based on large-scale
datasets (e.g., ImageNet [1]) has been employed in industrial appli-
cations and research, especially in the medical field where weight
transfer of CNNs is important for optimal performance as medical
dataset usually contains only a limited number of samples.

In recent years, such methods have been routinely used in CNN-
based medical imaging studies and applications, such as respiratory
disease classification [2,3]; early-stage skin cancer [4,5], acute intracra-
nial hemorrhage [6], and musculoskeletal abnormality detection [7];
cell segmentation [8]; and early glaucoma diagnosis [9].

Despite the popularity of transfer learning in medical imaging, there
has been little study on its precise effects. Moreover, while recent works
on natural images have revealed major shortcomings, such as over-
estimated generalization ability [10] and poor transfer effectiveness
even between similar tasks [11], they have not focused on medical
imaging, and their findings remain questionable since medical and
natural images differ considerably.

Intuitively, visual information of natural and medical images differ
significantly. In Fig. 1, in each dataset, compared with medical im-
ages, natural images appear diverse and possess more contour details
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and more colors, reflecting rich visual information. By contrast, the
medical images look almost identical, indicating considerably lesser
visual information. Accordingly, natural image tasks are usually ac-
complished by identifying major morphological characteristics (e.g.,
edges, colors, or shapes) of the primary subjects, while in medical ap-
plications, pathologies are identified by detecting small abnormalities
and local texture variations, such as bleeding [6,12] and inconsistent
structures [7]. CNNs pre-trained with different visual information can
not only understand image morphological characteristics in different
ways (or acquire different types of morphological awareness) but also
learn drastically different types or amounts of morphological awareness
from natural and medical images and ultimately facilitate the transfer
learning of medical tasks.

Another major difference between natural and medical images lies
in their modality, which depends on the camera type and imaging
methods used. Recent studies have shown that large modality differ-
ences can significantly degrade transfer learning performance [9,13].
Considerable modality differences can be perceived between medical
and natural images, and even among medical images.

Given the modality difference between medical and natural images
and the existence of different methods for obtaining morphological
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Fig. 1. Example images from natural (below the red box) and medical (below the blue box) image datasets. The medical images are visually homogeneous and lack morphological
characteristics.
awareness, it is questionable why recent studies have relied heavily on
pre-training with natural image datasets rather than medical images,
since similar images intuitively provide close visual information and
even relevant hints during transfer learning. Although recent efforts
have been made to study transfer learning on medical imaging, they
either still pre-training with ImageNet [14] or without thoroughly an-
alyzing the precise properties [15–17]. Furthermore, they have studied
only a single classification or segmentation task, and never on survival
prediction task, which is not sufficiently comprehensive.

In this work, we performed a fine-grained study of medical-imaging-
based transfer learning and evaluated it on several medical tasks. The
main results obtained are as follows:

[1] To assess modality differences among images, we propose
convolution-based visualization and distance as novel measuring tools.
Qualitative and quantitative analyses showed that images with similar
visual appearances not only look similar to the naked eye but are
also close to each other in the convolved subspace, with a small dis-
tance value. Modality similarity can be qualitatively and quantitatively
assessed.

[2] We used medical images (instead of ImageNet) to initialize
the network, and subsequently fine-tuned and evaluated the network’s
performance for various medical datasets. We found that while pre-
training a model on medical images offered transfer benefits for disease
classification, owing to lack of visual information in the medical im-
ages, the model cannot effectively learn morphological characteristics,
thereby exhibiting poor morphological awareness and poor perfor-
mance for segmentation tasks. These findings are independent of the
number of pre-training samples.

[3] We overcame the above lack of morphological awareness by
employing medical data with diverse modalities to provide sufficient
morphological and modality information to the model. An analysis of
per-layer weight similarity and overall performance demonstrated the
effectiveness of this strategy.

[4] Finally, we compared medical and ImageNet pre-training in
terms of filter representation and performance for different data
regimes. While ImageNet pre-training is superior for medical research,
with the availability of an increasing amount of medical data, medical
pre-training has considerable potential.

2. Experimental setup

2.1. Datasets and model

We considered a variety of medical imaging datasets with di-
verse modalities, including prominent X-ray (ChestXRay [2] and CheX-
pert [3]), fundoscopic imaging (EyePACS [31], MESSIDOR [29],
DRISHTI-GS [26], etc..), computed tomography (CHAOS-CT [19] and
NIH-CT-82 [20]), and magnetic resonance imaging datasets (Cardiac-
MRI [21] and CHAOS-MRI [19]). Datasets without official division
were randomly divided into 80%/20% for training/testing. We ex-
cluded the target class shared between pre-training and test datasets
to prevent task-specific information leakage. For example, in CheXpert
and ChestXRay, we excluded the class pneumonia, which is shared
2

by both datasets. In total, we selected 20 datasets, of which 17 for
medical imaging and 3 for natural images, to conduct our study. Detail
information is demonstrated in Table 1.

For most experiments, we report the results of model training from
scratch (Random) or with the full ImageNet dataset (ImageNet*). Every
experiment was repeated thrice and the metrics of micro-averaged area
under curve (AUC) and mean intersection over union (mIoU) were
obtained in the form of mean with standard deviation. For convenience,
pre-training on medical image datasets is termed medical pre-training.
To the best of our knowledge, this is the first study to use a dataset
collection of such scale and variety for studying the transfer learning
in medical fields.

Since a large model is not advantageous for medical tasks [14], we
chose the smallest member (i.e., ResNet-18) of the ResNet family [5,
13,17,36] as the basic backbone network of our experimental model.
We also present results obtained with other classification models with
state-of-the-art CNN-based architectures, such as the lightweight model
ShuffleNet V2 [37] and the cumbersome model DenseNet-121 [38].
Apart from the commonly studied classification task, we performed
experiments on a segmentation task by using the popular segmentation
model U-Net [8] and other latest segmentation architectures such as
DeepLabv3+ [39], CE-Net [40], HyNet [41], and ET-Net [42]. On the
basis of the convolved visual features of the backbone network, U-
Net uses an additional oversampling path in parallel to the encoding
filters to restore spatial sizes and generate final segmentation outputs.
Other segmentation models follow the same basic U-Net structure but
with multiple enhancements. DeepLabv3+ and CE-Net enable atrous
convolution filters and pyramid pooling modules to enlarge receptive
fields and better segment objects at various scales. HyNet combines
atrous convolutional filters and parallel up-sampling paths to deeply
fuse cross-level visual features and reduce dilution artifacts, and ET-Net
contains an extra boundary detection subnetwork to improve segmen-
tation performance on medical objects with blurry boundaries. All
segmentation models had the same backbone network and pre-trained
parameters for a classification task. The only difference was the extra
up-sampling decoder, which required fine-tuning.

2.2. Data preprocessing and augmentation

Since the datasets we used contains images with various sizes and
color, some preprocessing procedures are crafted to generate proper
inputs for training. Firstly, we crop the useless parts of the images
and resize them into 256 × 256 by bilinear interpolation. Secondly,
we adopt the CLAHE algorithm [43] to balance the brightness and
enhance the details of all images. Besides, due to the limited number
of samples, all training images are augmented to expand the datasets,
including random rotating (90, 180 and 270 degrees) and random
flipping (horizontally, vertically and diagonally), which helps overcome
the overfitting problem. ROI extraction is adopted for certain tasks (e.g.,
optic disk/cup segmentation) similar to that in [9].
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Table 1
Statistics of the datasets. Here CLS denotes classification, SEG denotes segmentation, SP denotes survival prediction. For
datasets with official division of training and testing sets, the number of images are shown in (number of training images) /
(number of testing images), otherwise the total amounts of images.
Name Modality Frame Size # of Images # of Classes Task

CheXpert [3] X-ray 390 × 320 224,316/624 2 CLS
ChestXRay 2017 [2] X-ray 1000 × 700 5,232/624 2 CLS
LUNA [18] CT 512 × 512 267 2 SEG
CHAOS-CT [19] CT 512 × 512 2874 2 SEG
CHAOS-MRI [19] MRI 320 × 320 992 5 SEG
NIH-CT-82 [20] CT 512 × 512 7,141 2 SEG
CardiacMRI [21] MRI 256 × 256 399 3 SEG
ISIC2019 [22–24] Dermoscopy 1024 × 768 25,331 9 CLS
TNBC [25] H/E Stained 512 × 512 50 2 SEG
DRISHTI-GS [26] Fundoscopic 2045 × 1752 50/51 2 SEG
REFUGE [27] Fundoscopic 1634 × 1634 400/400 2 SEG/CLS
HRF [28] Fundoscopic 3504 × 2336 45 3 SEG
DRIVE [28] Fundoscopic 565 × 584 20/20 2 SEG
MESSIDOR [29] Fundoscopic 2240 × 1488 1,200 4/4 CLS
STARE [30] Fundoscopic 700 × 650 397 15 SEG/CLS
EyePACS [31] Fundoscopic 4000 × 4000 35,126 5 CLS
OCT 2017 [2] OCT 1000 × 300 108,309/1,000 4 CLS
TCGA-GBM [32,33] H/E Stained 512 × 512 1,523 – SP
TCGA-LGG [32,33] H/E Stained 512 × 512 1,380 – SP

CIFAR100 [34] Natural Image 32 × 32 50,000/10,000 100 CLS
ImageNet [1] Natural Image 500 × 375 1.3M/60,000 1000 CLS
ADE20K [35] Natural Image 1000 × 1000 20,210/2,000 2,603/826 SEG/CLS
Fig. 2. The cmv (top) and average cmd (bottom) of natural and medical image datasets. In cmv, each dataset was aggregated separately, and the natural (red box) and fundus
image datasets (blue box) tended to aggregate, indicating that a CNN could detect the visual similarity of images. Medical imaging datasets with similar modalities show the
smallest average cmd among all other datasets.
2.3. Experimental details

We implement our network in Python 3.7 based on PyTorch 1.3
platform. All experiments are conducted on Ubuntu 16.04 system with
two graphics processing cards, including an NVIDIA GeForce GTX 1080
Ti and an NVIDIA GeForce RTX 2080 Ti, with 22 GB memory in total.
We adopt Adam [44] as optimizer with a fixed learning rate of 1e-4, a
mini-batch size of 16 and other configuration in default. Early-stopping
is triggered when metrics stop improving for 20 iterations. For both
classification and segmentation tasks, we use Balanced Cross Entropy
as loss functions, where the weighting factors are defined according to
different datasets.

3. Convolution-based modality visualization and distance

Previous studies have judged modality differences from subjective
image observations or performance degradation [9,13]. Measurements
such as H-divergence [45] or maximum mean discrepancy [46], which
3

have been widely used to assess the distance between two data distri-
butions, either require training a task-specific mapping function or are
infeasible for a qualitative demonstration. Here, we propose a simple
and intuitive technique called convolution-based modality visualization
(cmv), which innovatively uses an untrained CNN model to aggregate
image features and reduce them into two-dimensional coordinates, to
visually evaluate image characteristics. The coordinates are obtained
from the following formula:
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where  is an image dataset,  is a CNN model (without nonlinear
activation, normalization, or dropout), 𝑠𝑡 is a subset sampled from ,
𝑛 is the number of images in 𝑠, and 𝑡 is the total number of times
we sampled from . We present the convolved coordinates of various
natural and medical image datasets in Fig. 2. Furthermore, we defined
a convolution-based modality distance (cmd), based on the coordinates
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Fig. 3. Results of ResNet-18 pre-training on classification datasets and of (a) classification and (b) segmentation tests. Models pre-trained with classification datasets with the most
similar modality (red box) achieved the best AUC for both medical and natural image classification tasks. For segmentation datasets, however, the natural dataset ADE20K brought
the best performance, indicating a shortage of morphological features in the medical datasets.
obtained from images, for quantitative evaluation:
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where 𝑎 and 𝑏 are two image datasets, 𝑛 is the number of coordinates,
and (𝑥, 𝑦) are the values of each coordinate. The cmd is the mean
Euclidean distance of all coordinates between the two datasets. Since
the scales of the CNN outputs differ with the initialization type, we used
an average cmd, defined as follows, as the final measurement:
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where 𝐼 is the initialization method and 𝜀 is a factor used to rescale
the cmd to the same magnitude for each initialization. We chose three
popular initialization methods – Kaiming [47], orthogonal [48], and
Xavier [49] – for demonstration and made interesting observations.

Modality Similarity Can be Detected by Both Naked Eyes and CNN.
In Fig. 2, the cmv shows that every dataset aggregated separately,
implying that a certain image dataset possessed a specific modality
characteristic to cause the images to have different locations in the
subspace. Notably, both natural and medical datasets (e.g., fundoscopic
imaging data) clearly show aggregation, indicating that the similarity
among images can be detected not only by human eyes but also by
a CNN. The aggregation of the coordinates of datasets with similar
modalities in the cmv indicates that a CNN can yield similar features
within its intermediate layers. Therefore, since large cmd indicates
large distance in cmv subspace and images with different modalities
have a large cmd, the features differ significantly when the CNN pro-
cesses data with different modalities. This suggests that images with
similar modalities facilitate easier identification and optimization by
CNNs during transfer learning.

Rescaling Factor for Convolution-based Modality Distance. We use
the intra convolution-based modality distance (cmd) of ImageNet as 𝜀
factors to rescale the cmd to the same magnitude for each initialization.
Specifically, 𝜀 is 4.4976 for Kaiming [47], 0.0317 for Orthogonal [48]
and 0.0162 for Xavier [49].
4

4. Pre-training on medical imaging data

From the observations in Section 1, it is unclear whether pre-
training with medical images with high modality similarity (or low
cmd) improves the CNN performance for medical tasks. The impact of
morphological awareness on the CNN performance is also unclear. This
section discusses the extensive experiments performed to explore the
properties of medical pre-training.

4.1. Pre-training on classification datasets

In the first experiment, we pre-trained on four large-scale classifi-
cation datasets: two natural (ImageNet and ADE-20K [35]) and two
medical image datasets (CheXpert and EyePACS). Later, we fine-tuned
and tested on classification datasets of ChestXRay, MESSIDOR, and
CIFAR100 [34]. As evident in Fig. 2, the modalities of ChestXRay,
EyePACS, and CIFAR100 were the closest to those of CheXpert, MESSI-
DOR, and ADE20K/ImageNet, respectively. For convenience, we denote
the model trained with a dataset by the dataset’s name in italics (e.g.,
EyePACS represents the model pre-trained on the EyePACS dataset). To
eliminate the effect of the number of samples, we used subsets of twenty
thousand images, which were named ImageNet-20k, EyePACS-20k,
CheXpert-20k, and ADE20K.

Medical Pre-training on Image Datasets with Identical Modalities
Outperforms That on Image Datasets with Different Modalities. As
Fig. 3a shows, medical pre-training on a dataset with the highest modal-
ity similarity was superior to that on other datasets. For ChestXRay,
CheXpert showed the highest convergence speed and the best AUC
(97.24%). For MESSIDOR, EyePACS showed significant improvement
compared with the other models and achieved a performance level
very close to that of ImageNet∗. Notably, EyePACS used less than
1/1000 of the number of samples in ImageNet∗. The combination of the
observation on CIFAR100 with the preceding information in this para-
graph reveals that pre-training on datasets with the highest modality
similarity yields the best transfer benefits and features for classification
tasks. Similar conclusions can be drawn from observations of other
classification networks (ShuffleNet V2 and DenseNet-121) in Table 2,
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Fig. 4. Results of models pre-trained and tested on a segmentation task. While medical pre-training (red box) leads to high performance of the models on a close target, it results
in poor performance if transferred to a completely different target.
Table 2
Results of ShuffleNet V2 and DenseNet-121 initialized by either pre-training on classification datasets or self-supervised learning, and of the
classification and segmentation test. The best results are highlighted in bold.

Model Initialization ChestXRay [2] MESSIDOR [29] CIFAR100 [34] HRF [28] DRISHTI-GS [26] DRIVE [50]

ShuffleNet V2 [37]

Random 92.17 ± 2.03 79.66 ± 2.01 94.01 ± 0.68 83.32 ± 5.48 82.81 ± 2.21 79.21 ± 2.93
CheXpert-20k 95.42 ± 1.98a 76.06 ± 1.49 93.15 ± 0.42 81.84 ± 3.70 81.24 ± 2.10 79.03 ± 2.41
EyePACS-20k 90.23 ± 1.84 87.37 ± 1.54a 93.21 ± 0.39 82.53 ±3.13a 81.32 ±2.03a 78.03 ±1.93a

ADE20K 95.05 ± 2.07 81.47 ± 1.79 94.73 ± 0.49a 85.12 ± 3.29 83.12 ± 1.93 83.25 ± 2.76
SS-Jigsaw [51]b 92.79 ± 2.53 79.31 ± 2.10 94.25 ± 0.45 80.31 ± 5.36 80.23 ± 1.95 79.19 ± 3.63
SS-Context [52]b 93.02 ± 2.34 78.24 ± 1.97 94.16 ± 0.99 80.40 ± 5.61 80.62 ± 1.92 78.56 ± 4.19

DenseNet-121 [38]

Random 97.14 ± 1.94 85.83 ± 1.80 95.59 ± 0.53 86.11 ± 5.29 86.02 ± 1.83 79.35 ± 1.62
CheXpert-20k 98.32 ± 1.87a 81.21 ± 1.92 95.43 ± 0.41 84.49 ± 4.41 84.37 ± 1.93 81.34 ± 3.19
EyePACS-20k 95.28 ± 1.52 91.63 ± 1.47a 95.30 ± 0.49 86.03 ±3.42a 84.72 ±2.01a 80.22 ±1.64a

ADE20K 97.91 ± 1.96 89.24 ± 1.87 97.47 ± 0.31a 86.41 ± 4.05 86.93 ± 1.69 86.19 ± 2.03
SS-Jigsaw [51]b 96.42 ± 1.92 81.43 ± 2.01 95.72 ± 0.36 82.83 ± 5.87 81.61 ± 1.83 80.10 ± 2.45
SS-Context [52]b 97.06 ± 1.88 83.63 ± 1.83 95.68 ± 0.42 83.10 ± 6.16 82.49 ± 1.94 78.61 ± 1.93

aThe most similar modality was shared between the pre-training and fine-tuning datasets.
bSelf-supervised learning methods.
and they indicate that such transfer advantages can be achieved for
different deep learning architectures.

Medical Pre-training Fails to Provide Sufficient Morphological
Awareness. We also evaluated medical pre-training on three fundus
segmentation datasets, namely, HRF [28], DRIVE [50] (retinal vessel),
and DRISHTI-GS [26] (optic cup). As evident in Fig. 3b, pre-training
on the dataset with the highest modality similarity (i.e., EyePACS)
failed to yield the best results. Rather, pre-training on a dataset with a
large modality distance (i.e., ADE20K) yielded the best results. Similar
observations were obtained for other backbone networks (ShuffleNet
V2 and DenseNet-121), and they are presented in Table 2. Unlike classi-
fication tasks, a segmentation task requires rich morphological awareness
for locating and recognizing the target objects [11]. Since medical
images possess considerably less morphological information than nat-
ural images, a CNN pre-trained on medical images cannot recognize
the morphological characteristics of the target and its performance is
inevitably poor. The lack of morphological awareness appears to affect
the performance more strongly than the lack of modality similarity. The
effect of different tasks or the number of samples should be assessed to
determine which of the two factors (i.e., morphological awareness and
modality similarity) is more critical for medical pre-training.

4.2. Pre-training on segmentation datasets

In the second experiment, for the evaluation of medical pre-training
(similar to [17]), we replaced the classification datasets with segmen-
tation datasets, which comprised the natural image dataset ADE20K-
Seg (segmentation version of ADE20K) and three medical datasets,
namely, CHAOS-CT, CHAOS-MRI, and REFUGE-OD (optic disk part of
REFUGE [27]). After the pre-training of the models, we fine-tuned
the models and determined their performance for three segmentation
datasets, namely, CardiacMRI [21], NIH-CT-82 [20], and DRISHTI-GS.
Specifically, CHAOS-CT and CHAOS-MRI are subparts of the CHAOS
dataset. While CHAOS-CT pertains to the liver, CHAOS-MRI concerns
5

Table 3
Results for the latest segmentation models pre-trained and tested on a segmentation
task. The best results are highlighted in bold.

Model Initialization CardiacMRI NIH-CT-82 DRISHTI-GS

DeeplabV3+ [39]

Random 80.21 ± 2.41 60.21 ± 0.96 83.67 ± 2.02
CHAOS-CT 79.35 ± 3.59 59.74 ±1.02a 83.91 ± 1.79
CHAOS-MRI 80.05 ±2.38a 60.09 ± 0.87 83.73 ± 1.64
REFUGE 78.52 ± 2.57 60.12 ± 1.03 85.29 ± 1.64a

ADE20K-Seg 81.56 ± 2.93 65.27 ± 1.12 85.14 ± 2.14
SS-Jigsaw [51]b 80.77 ± 3.44 61.24 ± 0.75 81.02 ± 1.72
SS-Context [52]b 80.95 ± 2.20 60.83 ± 0.88 81.24 ± 1.52

CE-Net [40]

Random 80.34 ± 1.71 61.04 ± 0.98 83.13 ± 2.10
CHAOS-CT 80.01 ± 2.35 60.31 ±0.68a 82.32 ± 1.69
CHAOS-MRI 79.47 ±1.73a 60.42 ± 0.83 83.30 ± 1.79
REFUGE 80.45 ± 1.85 59.85 ± 0.90 85.44 ± 1.34a

ADE20K-Seg 82.19 ± 2.32 65.21 ± 1.01 85.09 ± 2.01
SS-Jigsaw [51]b 80.53 ± 2.42 61.32 ± 0.84 81.31 ± 1.45
SS-Context [52]b 80.84 ± 2.10 62.56 ± 0.96 82.24 ± 1.82

HyNet [41]

Random 80.93 ± 2.13 62.42 ± 0.86 83.48 ± 1.41
CHAOS-CT 80.55 ± 2.49 61.45 ±1.21a 82.69 ± 2.13
CHAOS-MRI 80.83 ±2.04a 62.03 ± 0.89 82.51 ± 1.66
REFUGE 80.09 ± 2.24 61.46 ± 1.13 86.11 ± 2.10a

ADE20K-Seg 83.47 ± 1.92 67.88 ± 1.21 85.47 ± 1.93
SS-Jigsaw [51]b 81.22 ± 2.34 62.34 ± 0.87 82.13 ± 1.73
SS-Context [52]b 81.09 ± 2.02 62.73 ± 1.19 81.84 ± 2.10

ET-Net [42]

Random 81.75 ± 1.98 62.73 ± 0.95 83.75 ± 1.95
CHAOS-CT 81.29 ± 2.41 62.12 ±1.02a 83.10 ± 2.01
CHAOS-MRI 80.83 ±1.78a 61.49 ± 0.92 82.64 ± 1.34
REFUGE 81.23 ± 1.92 63.31 ± 1.31 86.23 ± 1.36a

ADE20K-Seg 83.59 ± 2.08 67.97 ± 0.96 85.62 ± 1.94
SS-Jigsaw [51]b 81.01 ± 2.30 63.01 ± 0.79 82.34 ± 1.25
SS-Context [52]b 80.93 ± 1.96 62.69 ± 0.80 82.81 ± 2.10

aThe most similar modality was shared between the pre-training and fine-tuning
datasets.
bSelf-supervised learning methods.
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Fig. 5. Results for different numbers of pre-training samples. Medical pre-training constantly outperformed natural image pre-training on classification tasks, but not on a
segmentation task.
the liver, kidney, and spleen. The test datasets CardiacMRI, NIH-CT-82,
and DRISHTI-GS pertain to the endocardium and epicardium, pancreas,
and optic cup, respectively. The highest modality similarities were
observed between CardiacMRI and CHAOS-MRI, between NIH-CT-82
and CHAOS-CT, and between REFUGE-OD and DRISHTI-GS. Besides
U-Net, we present results for the other latest segmentation models,
namely, DeepLabv3+ [39], CE-Net [40], HyNet [41], and ET-Net [42].

Medical Segmentation Pre-training Also Fails to Introduce Mor-
phological Awareness. As Fig. 4 shows, medical pre-training showed
worse performance than even Random for CardiacMRI and NIH-CT-
82, while ADE20K-Seg showed the best results for both these datasets.
Similar performance degradation for the CardiacMRI and NIH-CT-82
datasets can be observed in the case of other latest segmentation
models in Table 3. Evidently, segmentation pre-training can provide
satisfactory representation, similar to classification training, and there-
fore, the aforementioned poor performance of medical pre-training is
attributed to the medical images. As mentioned in Section 4.1, with-
out sufficient morphological information, the model cannot acquire
sufficient morphological awareness from medical images. Although an
exception occurs when targets in the pre-training and fine-tuning stages
are similar (e.g., the targets, namely, optic disk and optic cup, are
located close to each other in REFUGE and DRISHTI-GS), in which
case the highest modality similarity leads to the best performance, the
absence of morphological awareness remains the main reason for the
poor performance of the model initialized by medical pre-training on
the other two datasets (i.e., CardiacMRI and NIH-CT-82).

4.3. Observation on self-supervised learning methods

Recent studies on self-supervised learning methods have shown the
suitability of the methods for initializing CNNs with sufficient visual
features and their potential to outperform transfer learning methods.
However, to date, no comparison has been made between medical
pre-training and their self-supervised learning counterparts. Here, we
present results of two popular self-supervised learning methods (SS-
Jigsaw [51] and SS-Context [52]) for a comprehensive comparison. We
directly pre-trained CNNs using the self-supervised methods with the
target datasets considered in this study (i.e., ChestXRay, MESSIDOR,
CIFAR100, HRF, DRISHTI-GS, DRIVE, CardiacMRI and NIH-CT-82).

Self-supervised Learning with Medical Images Also Fails to Pro-
vide Sufficient Morphological Awareness. As shown in Table 2, for
both ShuffleNet V2 and DenseNet-121 backbone networks, while the
self-supervised learning models showed better performance on some
datasets (e.g., CIFAR100, and DRIVE) compared with Random, the
models using transfer learning strategies still showed the best per-
formance. Furthermore, for the latest segmentation models (Table 3),
self-supervised learning methods could improve their performance and
render them somewhat better than Random for large datasets (Car-
diacMRI and NIH-CT-82), but not for small datasets (DRISHTI-GS).
These observations indicate that despite some solid results of previous
6

studies [51,52], self-supervised learning is not trivial in the medical
domain. Owing to the lack of morphological information in medical
images, self-supervised learning methods cannot introduce sufficient
morphological awareness into CNNs either. Another possible reason
for the poor performance of self-supervised models is that the number
of samples in some datasets (e.g., DRISHTI-GS, HRF, and DRIVE) is
small and may not be sufficient to properly initialize a CNN model.
One piece of evidence for this hypothesis is that the performance of
self-supervised models trained with a large number of samples (e.g.,
CIFAR100, ChestXRay, CardiacMRI, and NIH-CT-82) is generally better
than Random, while that of self-supervised models trained with small
datasets is not.

4.4. Analysis of the number of samples

This section discusses our investigation of whether the number
of pre-training samples influenced previous observations that med-
ical data fail to provide sufficient morphological awareness to CNN
model. Experiments were performed on three datasets: two classifica-
tion datasets (Chest-X-Ray and MESSIDOR) and a segmentation dataset
(DRISHTI-GS).

Medical pre-training Constantly Outperforms ImageNet
pre-training on Classification Tasks. The performance gaps for Im-
ageNet and medical pre-training are apparent. As observed in Fig. 5,
medical pre-training constantly performed better than ImageNet on a
classification task. Despite being pre-trained on only fifty thousand
samples, CheXpert showed performance very close to that of ImageNet∗,
which was trained on nearly 1.3 million images. For MESSIDOR too,
high performance was observed. This demonstrates a significant ad-
vantage of medical pre-training: data with higher modality similarity
facilitate a significant performance improvement on a classification
task.

Increasing Sample Size Does Not Compensate for Lack of Mor-
phological Awareness. For the segmentation of DRI-SHTI-GS, medical
pre-training did not significantly improve the model performance when
the sample size was increased. Despite its very high modality similarity,
EyePACS constantly performed worse than Random. Thus, increasing
the number of pre-training samples does not help overcome the lack of
morphological awareness.

5. Overcoming drawbacks of medical pre-training and further
analysis

5.1. Overcoming drawbacks of medical pre-training

Although medical pre-training facilitates effective transfer under
certain circumstances, it has a key drawback: lack of morphological
awareness. The images in a single medical dataset are highly homoge-
neous and therefore provide very limited morphological information.

Furthermore, they may cause the CNN to be confined to a particular
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Fig. 6. Per-layer CCA similarities before/after training on different datasets/collections (a) and the corresponding visualization of conv1 filters (b). With an increase in the modality
and variety of the data, larger changes are apparent in the filters in M3 and M6, resulting in richer representations.
Fig. 7. Performance results for (a) different datasets/collections and (b) different numbers of fine-tuning samples. M6 outperformed M3 and the single medical dataset, and despite
containing considerably fewer samples than ImageNet ∗, it showed performance comparable to that of ImageNet ∗.
domain and render its transfer to another medical task difficult. Since
the morphological information in a single-modality medical dataset
is limited, adding more medical data with diverse modalities might
help improve the morphological awareness, since more modalities and
morphological features can be provided to the CNN. We used several
collections of datasets to evaluate the effect of medical data with differ-
ent types of modalities on pre-training. For classification pre-training,
two collections – M3 CLS (CheXpert, EyePACS, and ISIC [22–24]) and
M6 CLS (M3 CLS + OCT [2], MURA [7], and STARE-CLS [30]) – were
used. For segmentation pre-training too, two collections – M3 SEG
(CHAOS-CT, CHAOS-MRI, and TNBC [25]) and M6 SEG (M3 SEG +
LUNA [18], REFUGE-OD, and STARE-SEG) – were used.

Representational Analysis of CNN Filters. We first compared
the per-layer representational similarity before and after pre-training
using Singular Vector Canonical Correlation Analysis (SV-CCA) [53], as
7

shown in Fig. 6a. Clearly, M3 and M6 provided more filtering modifica-
tions compared to the previous scheme (i.e., ADE20K, EyePACS etc..),
indicating that more features were captured by the CNN. This plot also
suggests that pre-training on medical data collections could introduce
comparable features in the natural image dataset (i.e., ADE20K) and
that both medical classification and segmentation tasks could facilitate
satisfactory network initializations. Finally, a comparison of the simi-
larity between conv1 and the previous scheme shows that M3 and M6
caused more changes in the low-level convolutional layer, indicating
that more task-independent features were learned. Additionally, we
visualized the conv1 filter of the CNN in Fig. 6b. It is evident that
M6 brings more Gabors than M3 and make conv1 closer to that of
ImageNet∗, indicating that the use of large amount of medical data
with diverse modalities for pre-training resulted in representational
improvement of CNN.
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Table 4
Numbers of WSIs, patients, originally extracted patches, and valid patches. Patches
extracted from background parts in WSIs have been excluded.

Dataset TCGA-LGG TCGA-GBM

Number of patients 387 349
Number of WSIs 1380 1523
Number of patches 275453 339912
Number of valid patches 103512 112565

More Modalities Lead to Better Performance. We evaluated the
performance of M3 and M6 on five datasets. In Fig. 7a, it is evident
that M6 outperformed M3 and the previous scheme on all five tasks in
several aspects. First, the representational improvement resulting from
the use of M6 led to better performance, which indicated enhanced
morphological awareness. Second, M3 and M6 did not degrade the
performance, indicating strong transfer robustness. Third, both M6 CLS
and M6 SEG outperformed their M3 counterparts, indicating that for
both segmentation and classification, morphological awareness could be
improved by involving diverse modalities. Thus, pre-training on med-
ical dataset collections is effective for overcoming the aforementioned
drawback of medical pre-training and yields satisfactory results.

5.2. Further analysis: High potential and limitations of medical pre-training

Fig. 7b shows a major advantage and a disadvantage of medical
pre-training. On the one hand, compared with natural images, medical
images with high modality similarity provide more transfer benefits
in medical applications. In particular, medical pre-training with tens
of thousands of samples can lead to performance comparable to that
with ImageNet∗, which contains millions of samples. With the increased
use of deep learning methods in healthcare over the past year, large
amounts of large-scale medical data (e.g., CheXpert and EyePACS)
have become available, and they could facilitate the development of
a medical version of ImageNet in the near future. In such an event,
since considerably more modalities of data can be used compared with
our study, the transfer effectiveness of medical pre-training is likely to
exceed that of pre-training with ImageNet.

On the other hand, it is noteworthy that ImageNet∗ constantly
outperformed medical pre-training on both MESSIDOR and NIH-CT-
82 for different data regimes, suggesting that ImageNet pre-training
is currently the best option for medical research. Although a recent
study [11] demonstrated that pre-training with ImageNet is not drasti-
cally different from slightly longer training with random weights, but
these studies were based on large-scale natural image datasets. As evi-
denced by our previous experiments in Figs. 3 and 4, ImageNet showed
the best performance on almost all medical datasets, especially outper-
forming Random on the small-scale datasets, indicating that training
with random weights could not lead to the same performance as
training with ImageNet. The reason why an observation identical to
that of the previous study (the performance of the model initialized by
pre-training on ImageNet is similar to that of the model trained with
random weights) was not made for the medical image datasets in the
present study is twofold: First, the number of samples in the natural
image datasets (118,287 images in the COCO dataset [54] and 15,000
images in the PASCAL VOC dataset [55]) is significantly greater than
that in most of the medical datasets (e.g., 267 images in the LUNA
dataset, 45 images in the HRF dataset, and 399 in the CardiacMRI
dataset). Second, as mentioned, compared with medical images, natural
images and their corresponding annotations are considerably more
varied, which allows for more morphological awareness. Owing to
these reasons and the collection of sufficient medical data being several
years away, ImageNet transfer is currently the most economical and
effective option.
8

Fig. 8. Some sample patches from two TCGA datasets. The patches in each dataset are
from the same patient.

5.3. Apply medical pre-training on survival prediction

Apart from classification and segmentation tasks, survival analysis
is also an important part of computer-aided medical image analysis
and plays a critical role in current clinical practice [56–58]. Therefore,
we performed medical pre-training on a survival analysis task and
assessed the transfer robustness. We focused on brain cancer in our
study and used two public cancer survival datasets containing whole
slide pathological images (WSIs) with high resolution from The Cancer
Genome Atlas (TCGA) [32]. Specifically, we conducted experiments on
two subtypes of brain cancer in TCGA projects: lower-grade glioma
(LGG) and glioblastoma (GBM). We adopted the annotations of the
vital status and overall survival time from a previous study [33] and
followed the patch selection procedure used in [56]. All patches were
extracted with a size of 512 × 512 pixels from WSIs. The numbers of
WSIs and patients in each dataset are presented in Table 4 and sample
patches are shown in Fig. 8. In the experiments, the concordance index
(C-index) [58] was used as the metric for performance evaluation. It
was defined as the quality of rankings and calculated as follows:

𝐶-𝑖𝑛𝑑𝑒𝑥 = 1
𝑛

∑

𝑖∈{1…𝑁 ∣𝛿𝑖=1}

∑

𝑡𝑗>𝑡𝑖

𝐼
[

𝑓𝑖 > 𝑓𝑗
]

, (4)

where 𝑛 is the number of pairs compared, 𝑡 is the true observed value,
𝑓 is the risk factor, and 𝐼[⋅] is an indicator function. The C-index ranges
from zero to one, and the higher its value, the better the prediction of
the models.

Survival Prediction Also Benefits from Medical Pre-training. To
validate the effectiveness of medical pre-training on the survival pre-
diction task, we first used two recent deep learning models (ResNet-18
and DenseNet-121) with two clustering methods (K-means and spectral
clustering) to directly predict the survival time. As shown in Table 5,
for the ResNet-18 and DenseNet-121 models with either K-means or
spectral clustering, the use of the ImageNet dataset for weight initial-
izations yielded the best performance. Nevertheless, compared with
random weight initialization, medical pre-training helped improve the
survival prediction performance by ≥ 4.04%, and even up to 11.39%
(compare with M6-SEG and Random on DenseNet-121 + SP). This
indicates transfer benefits resulting from medical pre-training.

Furthermore, we applied medical pre-training to the feature extrac-
tors of two recent deep-learning-based survival prediction frameworks,
namely WSISA [56] and DeepAttnMISL [58], to further validate the ef-
fectiveness of medical pre-training. In particular, WSISA was evaluated
in combination with a recent multitask learning method MTLSA [59],
which is specifically designed for survival prediction tasks. Apart from
deep-learning-based models, we also present results from two previous
state-of-the-art methods (RSF [60] and BoostCI [61]). As shown in
Table 6, compared with random weight initialization, medical pre-
training improved the performance of WSISA + MTLSA by up to 3.84%
for TCGA-LGG and by up to 5.65% for TCGA-GBM. For DeepAttnMISL,
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Table 5
Survival prediction results (in percentage) for different feature extractors and clustering
methods. KM and SP denote K-means clustering and spectral clustering, respectively.
The clustering number was set to six.

Model Initialization TCGA-LGG TCGA-GBM

ResNet-18 + KM

Random 47.21 ± 4.81 45.35 ± 4.40
M6-CLS 52.76 ± 4.42 51.09 ± 5.39
M6-SEG 53.01 ± 3.93 52.17 ± 4.83
ImageNet* 55.51 ± 4.04 54.48 ± 4.21

ResNet-18 + SP

Random 47.87 ± 4.59 40.21 ± 5.86
M6-CLS 51.91 ± 5.49 48.03 ± 4.62
M6-SEG 53.18 ± 5.03 49.10 ± 3.49
ImageNet* 55.40 ± 4.28 54.79 ± 4.01

DenseNet-121 + KM

Random 48.65 ± 5.13 43.89 ± 6.11
M6-CLS 56.30 ± 3.92 53.64 ± 4.21
M6-SEG 53.76 ± 4.08 50.29 ± 4.42
ImageNet* 58.38 ± 3.92 60.49 ± 4.24

DenseNet-121 + SP

Random 51.81 ± 5.35 45.81 ± 5.41
M6-CLS 56.48 ± 3.49 56.32 ± 4.81
M6-SEG 53.12 ± 4.32 57.20 ± 4.32
ImageNet* 57.24 ± 4.37 60.19 ± 3.90

Table 6
Survival prediction results (in percentage) for the latest models, where the feature
extractors of deep-learning-based models were initialized in different ways. The best
results are highlighted in bold.

Model Initialization TCGA-LGG TCGA-GBM

RSF [60] – 48.24 ± 4.09 50.53 ± 3.98

BoostCI [61] – 47.75 ± 5.33 52.77 ± 4.18

WSISA [56] + MTLSA [59]a

Random 43.45 ± 5.11 42.90 ± 5.66
M6-CLS 47.29 ± 3.48 48.55 ± 4.41
M6-SEG 46.03 ± 5.06 45.28 ± 3.93
ImageNet* 49.78 ± 4.70 53.91 ± 4.72

DeepAttnMISL [58]a

Random 45.93 ± 5.71 49.89 ± 4.35
M6-CLS 51.73 ± 4.66 53.54 ± 4.87
M6-SEG 54.34 ± 3.94 55.22 ± 3.90
ImageNet* 56.81 ± 3.49 57.87 ± 3.76

aDeep learning-based models.

medical pre-training yielded an improvement by up to 8.41% for
TCGA-LGG and by up to 5.33% for TCGA-GBM, which confirmed the ef-
fectiveness of medical pre-training. Nonetheless, the models initialized
with ImageNet still performed the best on both datasets, indicating the
same conclusion as in Section 5.2: ImageNet transfer is currently the
most economical and effective option.

6. Conclusion

We investigated the effectiveness of medical pre-training. Through
cmv and cmd, we determined the modality characteristics of images and
showed the effectiveness of medical pre-training on a classification task.
We also revealed drawbacks related to the generalization ability and
morphological awareness, identified their origin to be the lack of visual
variety in medical images, and showed that the drawbacks could be
overcome by introducing additional medical data with diverse modali-
ties. Finally, we compared the two pre-training schemes for real-world
scenarios and found that pre-training with ImageNet is still the best
choice owing to its advanced visual representation and generalization
tolerance. However, we also demonstrated that medical pre-training
has significant potential.
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